Chapter 35. Functionsused in Actions

Thereisaset of supported functions that can be used in action stanzas.
Actions are described in Chapter 34: Actions and ACTION Keyword Values. In
the present chapter we give a general overview of functions, list and describe
all the supported functions, provide a couple of examples of functions within
actions, and list all the read-only variables available to the supported functions.

35.1 Overview of Functions

Table filesand UPD configuration files often include actions. An action
corresponds to a command, usually a UPS command, and lists functions to
perform in addition to the command’sinternal processes, when the command is
executed. The supported functions are listed and described in this chapter. A
function has the format:

<function_name>([<argunent_1>] [, <argument_2>] ... [<delimiter>])

The default delimiter is the colon (:).
For example, the function:
envPrepend(<VARI ABLE>, <val ue>)

prepends the specified value to an existing environment variable, using the
default delimiter.

Functions are not case-sensitive; e.g., envPr epend, envpr epend, and
ENVPREPEND are all acceptable and equivalent. A function is specified in a
shell-independent manner, but contains enough information to allow it to be
transformed into ash or csh family command (e.g., sour ceRequi red() ,or
execut e()), or to be interpreted directly by UPS (e.g.,
writeConpileScript()).

Functions used in Actions 35-1

35.2 Reversble Functions

In section 34.2.2 “ Uncommands’ as Actions we discussed commands that
have corresponding “uncommands’. Usually, when the “uncommand” isrun,
the desired behavior isto reverse all the functions that were performed when
the original command was run. Many of the supported functions are
reversible, some are not.

Wherever you plan to default the “uncommand” action (i.e., to specifically not
include an ACTION=UNCOMMAND stanza) and you want UPS to exactly
reverse the ACTION=COMMAND functions, make sure that you only include
reversible functions under ACTION=COMMAND. Reversible functions are
identified as such in the descriptionsin section 35.3 Function Descriptions.

35.3 Function Descriptions

35.3.1 addAlias

Description

Add an alias (C shell family) or function (Bourne shell family). A % inthe
<VALUE> markswhere the argument list should go. Reversible (runs
unAl i as).

Syntax

addAl i as(<NAVE>, <VALUE>)

Example 1

addAl i as(askfor, ‘echo May | have some %, please\?)

Definesthe alias askf or, which when run with an argument like cake,
eg.,

% askf or cake

produces the response:
May | have sone cake, please?

Example 2

addAl i as(setup, ' ${UPS_SOURCE} " ${UPS_PRCD DI R}/ bin/ups setup % ')

35-2 Functionsused in Actions

${ UPS_SOURCE} issetto”.” or “sour ce” depending on the shell, and
% ispresumed to stand for a product name. Thisdefinesthe alias set up.
When issued with a product name, e.g.,

% setup upd

it sources the executable ${ UPS_PROD DI R}/ bi n/ ups with the
arguments set up and upd.

35.3.2 doDefaults

Description

Perform the default functions for the command corresponding to the specified
action (only SETUP and UNSETUP have default functions). If no action listed
(e.g., doDef aul t s()), then the action under which this function occursis
used. Reversible (runs doDef aul t s).

Note: If an ACTION corresponding to the given command is included in the
file, the command’s default functions will be executed only if doDef aul ts
is specified underneath it. If thereisno ACTION for the command, and hence
no doDef aul t s function listed, the default functions will be executed
when the command is issued.

Syntax

doDef aul t s([<ACTI ON>])

Example

doDef aul t s([SETUP])

Specifies that the default functions for the set up command will be run
when the command isissued. Moretypically, thisis specified in the following
manner:
ACTI ON=SETUP
doDef aul t s()

Functions used in Actions 35-3

35.3.3 Else

Description

A conditional, to beused with 1 f and Endl f orwith Unl ess and
EndUnl ess. El se takesnocommand string. El se isoptional, but we
recommend including it for clarity it even if no code followsit. See sections
35.3.17 If and 35.3.33 Unless for descriptions of processing. Also see sections
35.3.4 EndIf and 35.3.5 EndUnless.

Syntax

El se()

Example

Act i on=Set up

ProdDir ()

Set upEnv()

EnvSet | f Not Set (FOO, ": ")

EnvPrepend(FOO, ${UPS_PROD DI R}/ basi c)

If(test -d ${UPS_PROD DI R}/ exciting)
EnvPrepend(FOO, ${UPS_PRCD_DI R}/ exci ti ng)
El se()
EnvPrepend(FOO, ${UPS_PROD DI R}/ bori ng)
Endlf(test -d ${UPS_PRCOD_DI R}/ exciting)

35.3.4 EndIf

Description

Closesaconditional; to beused with |1 f andoptionally El se. The Endl f
statement must include a command that exactly matches the command in the
corresponding | f statement. Thisisbecause UPS must be ableto invert this
to get an unsetup action (to unsetup, the order gets inversed and the inverse of
the actions are called). Also see sections 35.3.17 If and 35.3.3 Else.

Syntax

Endl f (<sane command as used in |f statenent>)

Example

Acti on=Set up

35-4 Functionsused in Actions

ProdDir ()

Set upEnv()

EnvSet | f Not Set (FOO, ": ")

EnvPr epend(FOO, ${UPS_PROD DI R}/ basi c)

If(test -d ${UPS_PROD DI R}/ exciting)
EnvPrepend(FOO, ${UPS_PROD DI R}/ exciting)
El se()
EnvPrepend(FOO, ${UPS_PRCOD DI R}/ bori ng)
Endlf(test -d ${UPS_PROD DI R}/ exciting)

35.3.5 EndUnless

Description

Closes a conditional; to be used with Unl ess and optionally El se. The
EndUnl ess statement must include a command that exactly matches the
command in the corresponding | f statement. Thisis because UPS must be
ableto invert thisto get an unsetup action (to unsetup, the order getsinversed
and the inverse of the actions are called). Also see sections 35.3.33 Unlessand
35.3.3 Else.

Syntax

EndUnl ess(<sane comand as used in Unl ess statenent>)

Example

Acti on=Set up

ProdDir ()

Set upEnv()

EnvSet | f Not Set (FOO, ": ")

EnvPrepend(FOO, ${UPS_PRCD DI R}/ basi c)

Unl ess(test -d ${UPS_PROD DI R}/ exciting)
EnvPrepend(FOO, ${UPS_PROD DI R}/ bori ng)
El se()
EnvPrepend(FOO, ${UPS_PROD DI R}/ exciting)
EndUnl ess(test -d ${UPS_PROD DI R}/exciting)

Functions used in Actions 35-5

35.3.6 envAppend

Description

Append <val ue> to existing environment variable. Reversible (runs
envRenove).

It is better to append than prepend if you just want to provide avalue in case
oneisnot there. If you want to override any existing value, you should

prepend.
Note: Usethefunction pat hAppend for $PATH.
Syntax

envAppend(<VARI ABLE>, <value> [, <delimter>])

Example

envAppend(PYTHONPATH, ${UPS_PROD DI R}/ | i b)

Appendsthevalue of ${UPS_PROD DI R}/ 1i b tothevariable
PYTHONPATH, using the default delimiter.

35.3.7 envPrepend

Description

Prepend <val ue> to existing environment variable. Reversible (runs
envRenove).

It is better to prepend than append if you want to override any existing value.
If you just want to provide avalue in case oneis not there, you should append.

Note: Usethefunction pat hPrepend for $PATH.

Syntax

envPrepend(<VARI ABLE>, <value> [, <delimter>])

Example

envPr epend(PYTHONPATH, ${UPS PROD DI R}/ Ii b)

Prependsthe value of ${ UPS PRCD DI R}/ i b tothevariable
PYTHONPATH, using the default delimiter.

35-6 Functionsused in Actions

35.3.8 envRemove

Description
Removethestring <val ue> from existing environment variable.

Note: Usethefunction pat hRenove for $PATH.

Syntax

envRenmove(<VARI ABLE>, <value> [, <delimter>])

Example

envRenpve(PYTHONPATH, ${UPS_PROD DI R}/ i b)

Removesthevalue of ${ UPS PROD DI R}/ I i b from thevariable
PYTHONPATH; assumes the default delimiter.

35.3.9 envSet

Description

Set anew environment variable. Thisis particularly useful for representing
long strings. Reversible (runs envUnset).

Note: Usethefunction pat hSet for $PATH.

Syntax

envSet (<VARI ABLE>, <val ue>)

Example

envSet (UPD_USERCODE DI R, ${UPS_THI S_DB})

Sets { UPD_USERCODE_DIR} (thelocal database used by UPD) to
${UPS THIS DB} (the database in which the product is declared).

35.3.10 envSetlfNotSet

Description

Set anew environment variable, if not already set. Thisis particularly useful
for representing long strings.

Functions used in Actions 35-7

Syntax

envSet | f Not Set (<VARI ABLE>, <val ue>)

Example

envSet | f Not Set (HOST, ‘1 ong_host nane')
If not already set, this sets the variable HOST to along hostname.

35.3.11 envUnset

Description

Unset existing environment variable.

Syntax

envUnset (<VARI ABLE>)

Example

envUnset (MYVAR)
Unsets the variable SMY VAR.

35.3.12 exeAccess

Description

Check for access to specified existing executable through the $PATH. |f
executable is found continue. If not found, exit with error.

Syntax

exeAccess(<execut abl e>)

Example

exeAccess(gcc)

Ensures that a version of the product gccisin your $PATH.

35-8 Functionsused in Actions

35.3.13 exeActionOptional

Description

Process the functions associated with the specified action for the same product
instance. Do not fail if the action doesn’t exist. Reversible.

Syntax

exeActi onOpti onal ("<newacti on>")

Example

exeActionOpti onal (" CONFI GURE")

Process the functions in CONFIGURE action. If no CONFIGURE action,
processing continues.

35.3.14 exeActionRequired

Description

Process the functions associated with the specified action for the same product
instance. Fail if it doesn’t exist. Reversible.

Syntax

exeActi onRequi red(" <newacti on>")

Example

exeAct i onRequi r ed(" CONFI GURE")

Process the functions in CONFIGURE action. If no CONFIGURE action,
processing fails.

35.3.15 execute

Description

Execute a shell-independent command and (optionally) assign the output to an
environment variable, <VARI ABLE>.

Functions used in Actions 35-9

Thefunctions execut e, sour ceRequi r ed, sour ceReqCheck,
sourceOpti onal ,and sour ceOpt Check eachtakearequired
parameter (UPS_ENV_FLAG) which indicates whether to define UPS local
variables. This parameter can take the following values:

UPS ENV define all local UPS environment variables before
sourcing (the script or command relies on these being
defined)

NO_UPS ENV do not define the local UPS environment variables (the
script or command doesn’t use them)

If the optional third argument, <VARI ABLE>, isnot specified, then the
specified command is executed but the output from that command is not saved.
This command does not have to be shell-independent.

Syntax

execut e("<command>", <UPS ENV_FLAG>, [, <VARI ABLE>])

Example

execute("echo Call final installation script for
${ UPS_PROD_NANME} ${UPS_PROD _VERSI ON} ", NO_UPS_ENV)

(All on oneline.) UPS echoes the given text and sourcesthe cur r ent
script for the product.

35.3.16 fileTest

Description

Runashell teston <fil e>, fail if <test> isnottrue(see man test).

Syntax

fileTest(<file> <test> [, <errornmessage>])

Example

fileTest(/, -w, "You rmust be root to run this command.")

Thistests for write accessin the root directory and returns the shown error
message if the test fails.

35-10 Functionsused in Actions

35.3.17 If

Description

A conditional, to be used with Endl f and optionally with El se, inthe
order | f (<command>) ... El se()...Endif(<comand>). We
recommendthat El se alwaysbeincluded for clarity, evenif no code follows
it.

o If thecommand inthe | f statement succeeds, then UPS runs the code

followingthe | f statement and precedingany El se and/or Endl f
statement.

* If the command result isfalse, then UPS runs the code following the
El se statement and preceding the Endl f statement. If thereisno
El se statement, UPS does nothing.

Also see sections 35.3.4 EndIf and 35.3.3 Else.

A conditional If()...El se()...Endif() structurehasno effect on
dependencies. It may not work asyou expect if youput 1f()...Endlf ()
around Set upOptional () and/or Set upRequi red() statements.
Developerswriting table filesthat use 1 f () statementsto conditionally run
setup commands must test thoroughly using set up -V, and must read the
generated script files.

Syntax

| f (<conmmand>)

Example

Hereis a standard example:

Acti on=Set up

ProdDir ()

Set upEnv()

EnvSet | f Not Set (FOO, ": ")

EnvPrepend(FOO, ${UPS_PRCD DI R}/ basi c)

If(test -d ${UPS_PROD DI R}/ exciting)
EnvPrepend(FOO, ${UPS_PRCD_DI R}/ exci ti ng)
El se()
EnvPrepend(FOO, ${UPS_PROD DI R}/ bori ng)
Endlf(test -d ${UPS_PRCD_DI R}/ exciting)

Hereis an example showing behavior with dependencies. If foo depends on
bar (i.e., bar appearsin foo’'s dependency list), then the code:

Set upRequi r ed(f 00)

I f(some command that’'s true)

Functions used in Actions 35-11

Set upRequi r ed(bar)
El se()
Endi f(sonme conmand)

puts nothing inside the If statement in the generated script files, since the
Set upRequi r ed(bar) isredundant.

Similarly, if foo depends on bar v2, then:

I f(some conmand)

Set upRequi red(bar v1)
El se()

Set upRequi red(bar v2)
Endi f(sonme conmand)

sets up either bar v1 or nothing, since the second one is redundant. 1f you
want different dependencies, you must use different stanzas in the table file.

35.3.18 pathAppend

Description

Append <val ue> to existing $PATH-like environment variable. Reversible
(runs pat hRenove).

It is better to append than prepend if you just want to provide avalue in case
oneis not there. If you want to override any existing value, you should

prepend.
Syntax

pat hAppend(<VARI ABLE>, <value> [, <delimter>])

Example

pat hAppend(PATH, ${UPS _PROD DI R}/ bi n)

Appendsthevalue ${ UPS_PROD DI R}/ bi n tothe $PATH variable using
the default delimiter.

35.3.19 pathPrepend

Description
Prepend <val ue> to existing $PATH-like environment variable. Reversible
(runs pat hRenove).

It is better to prepend than append if you want to override any existing value.
If you just want to provide a value in case one is not there, you should append.

35-12 Functionsused in Actions

Syntax

pat hPr epend(<VARI ABLE>, <value> [, <delimter>])

Example

pat hPr epend(PATH, ${UPS_PROD DI R}/ bi n)

Prependsthevalue ${ UPS_PROD DI R}/ bi n to the $PATH variable using
the default delimiter.

Functions used in Actions 35-13

35.3.20 pathRemove

Description

Removethe string <val ue> from existing $PATH-like environment
variable. Reversible (runs pat hAppend).

Syntax

pat hRenove(<VARI ABLE>, <value> [, <delimter>])

Example

pat hRermove(PATH, ${UPS _PROD DI R}/ bi n)
Removesthevalue ${ UPS_PROD DI R}/ bi n from the $PATH variable.

35.3.21 pathSet

Description

Set a $PATH-like environment variable (in csh family, setting a$PATH is
different than setting other environment variables). No choice of delimiter
offered. Reversible (runs envUnset).

If this gets set wrong, your $PATH could get deleted. (To recover from this
problem, should it occur, simply run set up set path.)

Syntax

pat hSet (<VARI ABLE>, <val ue>)

Example

pat hSet (PATH, /afs/fnal.gov/ups/<prodl/vl 0/ SunCS+5/bin: ...)

Setsthe $PATH to the value given (sample value truncated after first delimiter
for brevity).

35.3.22 prodDir

Description

Set the $<PRODUCT>_DIR environment variable to the root directory of the
product instance. Reversible (runs unPr odDi r).

35-14 Functionsused in Actions

Syntax

prodDir ()

35.3.23 setupEnv

Description

Set the $SETUP_<PRODUCT> environment variable so that product can later
be unsetup. Reversible (runs unset upEnv).

Syntax

set upEnv()

35.3.24 setupOptional

Description

Setup another UPS product as a dependency, do not fail if the product doesn’t
exist. Reversible (runs unset upOpt i onal).

Syntax
The syntax is similar to the command set up:

setupOptional ("[<options>] <product> [<version>]")

Example

setupOptional ("perl™)

Setup the default instance of the product perl, if available. Do not fail if not
found.

35.3.25 setupRequired

Description

Setup another UPS product as a dependency; fail if product not found.
Reversible (runs unset upRequi r ed).

Functions used in Actions 35-15

Syntax

The syntax is similar to the command set up:

set upRequi red("[<options>] <product> [<version>]")

Example

setupRequired("-j Info")

Setup the default instance of the product I nfo and no dependencies, fail if not
available.

35.3.26 sourceCompileOpt

Description

If <fil eName> exists, then source it and skip remaining functions,
otherwise just complete the remaining functions. Thisistypically usedin
conjunctionwith wri t eConpi | eScri pt ; see section 35.3.38
writeCompileScript.

Syntax

sour ceConpi | eOpt ("<fil eName>")

Example

sour ceConpi | eOpt ("/ my/ conpi | e/ script")

This sources the specified script which was created with
writeConpil eScript. If script doesn’t exist, process continues.

35.3.27 sourceCompileReq

Description
Source <fi | eNanme> and skip al remaining functions; fail if file not found.

Thisistypicaly used in conjunction with wri t eConpi | eScri pt ; see
section 35.3.38 writeCompileScript.

Syntax

sour ceConpi | eReq(" <fi |l eNane>")

35-16 Functionsused in Actions

Example

sour ceConpi | eReq("/ my/ conpi | e/ script")

This sources the specified script which was created with
writeConpil eScript. If script doesn't exist, process fails.

Functions used in Actions 35-17

35.3.28 sourceOptCheck

Description

Check if specified script exists and if so, source it and check return status for
error. If error, abort script and return. Reversible (runs sour ceQpt Check
onthe“un” script, e.g.,, current and uncurrent).

Thefunctions execut e, sour ceOpt Check, sour ceOpti onal
sour ceReqCheck, and sour ceRequi red eachtake arequired
parameter (UPS_ENV_FLAG) which indicates whether to define UPS local
variables. This parameter can take the following values:

UPS ENV define all local UPS environment variables before
sourcing (the script or command relies on these being
defined)

NO_UPS ENV do not define the local UPS environment variables (the
script or command doesn’'t use them)

Thefunctions sour ceOpt Check, sourceQpti onal ,
sour ceReqCheck, and sour ceRequi r ed each take an optional
parameter (EXI T_FLAG). This parameter can take the following values:

CONTINUE after sourcing the script, continue with the next function
(the default)
EXIT after sourcing the script, skip the rest of the functions
Syntax
sour ceQpt Check(<SCRI PT>. ${ UPS_SHELL}, UPS_ENV_FLAG [,
EXI T_FLAG)
Example

sour ceOpt Check(${ UPS _UPS DI R}/ current.${UPS SHELL}, UPS_ENV)

Check if ${UPS_UPS DI R}/ current exists. If o, first defineal local
UPS environment variables, then source the script and check return status for
error. If error, abort script and return.

35-18 Functionsused in Actions

35.3.29 sourceOptional

Description

Check if <SCRI PT> existsand if so, sourceit. If script not found, continue.
Reversible (runs sour ceOpti onal onthe“un” script, e.g., current
and uncurrent).

See section 35.3.28 sourceOptCheck for information about the parameters
UPS_ENV_FLAG and EXI T_FLAG

Syntax

sour ceOpt i onal (<SCRI PT>. ${ UPS_SHELL}, UPS_ENV_FLAG [,
EXI T_FLAQ)

Example

sour ceOptional (${ UPS UPS DI R}/ current.${UPS SHELL}, UPS_ENV)

Check if ${UPS_UPS DI R}/ current exists. If so, first define al local
UPS environment variables, then source the script. If not, continue.

35.3.30 sourceRegCheck

Description

Source <SCRI PT> and check return status for error; fail if script not found.
If error, abort script and return. Reversible (runs sour ceOpt Check onthe
“un” script, e.g.,, current and uncurrent).

See section 35.3.28 sourceOptCheck for information about the parameters
UPS_ENV_FLAG and EXI T_FLAG

Syntax

sour ceReqCheck(<SCRI PT>. ${ UPS SHELL}, UPS ENV_FLAG [,
EXI T_FLAG)

Example

sour ceReqCheck(${ UPS UPS DI R}/ current.${UPS SHELL}, UPS_ENV)

Check if ${ UPS_UPS DI R}/ current exigts. If not, it will fail. If script
exists, first define all local UPS environment variables, then source the script
and check return status for error. If error, abort script and return.

Functions used in Actions 35-19

35.3.31 sourceRequired

Description

Source <SCRI PT>; fail if script not found. Return status not checked.
Reversible (runs sour ceOpt i onal onthe“un” script, e.g., current
and uncurrent).

See section 35.3.28 sourceOptCheck for information about the parameters
UPS_ENV_FLAG and EXI T_FLAG

Syntax

sour ceRequi red(<SCRI PT>. ${ UPS_SHELL}, UPS_ENV_FLAG [,
EXI T_FLAG)

Example

sour ceRequi red(${ UPS _UPS DI R}/ current.${UPS SHELL}, UPS_ENV)

Check if ${ UPS_UPS DI R}/ current exigts. If not, itwill fail. If script
exists, first define all local UPS environment variables, then source the script.

35.3.32 unAlias

Description

Remove aias/function of specified name.

Syntax

unAl i as(<NAME>)

35.3.33 Unless

Description

A conditional; to be used with EndUnl ess and optionally with El se, in
the order

Unl ess(<command>) ... El se() ... EndUnl ess(<command>).
The Unl ess statement must include acommand. If the command result is
false, UPS executes statements that follow Unl ess and that precede either
EndUnl ess or El se, whichever it encounters. If the command result is

35-20 Functionsused in Actions

trueand an El se statement exists, UPS executes statements that follow
El se and precede EndUnl ess. If thecommandistrueandno El se
statement exists, UPS does nothing.

See also sections 35.3.3 Else and 35.3.5 EndUnless. See section 35.3.17 If for
information on dependencies; EndUnl ess worksin an analogous manner.

Syntax

Unl ess(<conmmand>)

Example

Acti on=Set up

ProdDir ()

Set upEnv()

EnvSet | f Not Set (FOO, ": ")

EnvPrepend(FOO, ${UPS_PRCD DI R}/ basi c)

Unl ess(test -d ${UPS_PROD DI R}/ exciting)
EnvPrepend(FOO, ${UPS_PROD DI R}/ bori ng)
El se()

EnvPrepend(FOO, ${UPS_PROD DI R}/ exciting)
EndUnl ess(test -d ${UPS_PROD DI R}/exciting)

35.3.34 unProdDir

Description

Unsets the $<PRODUCT>_DIR environment variable. Reversible (runs
prodDir).

Syntax

unProdbir ()

Functions used in Actions 35-21

35.3.35 unsetupEnv

Description

Unsets the $SETUP_<PRODUCT> environment variable. Reversible (runs
set upEnv).

Syntax

unset upEnv()

35.3.36 unsetupOptional

Description

Runs unset up on aproduct, does not fail if the product doesn’t exist or if
it'salready unsetup. Reversible (runs set upOpti onal).

Syntax

The syntax is similar to the command unset up:
unset upOptional ("[<options>] <product> [<version>]")

For previously setup products, the only options that are recognized include
-e, -j,and -v.
Example

unset upOpti onal ("perl™)

Unsets the default instance of the product perl, if already setup. Does not fail
if product doesn’t exist or has already been unsetup.

35-22 Functionsused in Actions

35.3.37 unsetupRequired

Description

Runs unset up onaproduct; failsif product not found. Reversible (runs
set upRequi r ed).

Syntax

The syntax is similar to the command unset up:
unset upRequi red(" <opti ons>] <product> [<version>]")

For previously setup products, the only options that are recognized include
-e, -j,and -v.

Example

unset upRequi red(" perl™)

Unsets the default instance of the product perl, if already setup. Failsif
product doesn’t exist or has already been unsetup.

35.3.38 writeCompileScript

Description

Write afile of compiled functions for the given ACTION keyword value. It
actually writesfour filesin total: <scri pt>.[c]sh and
un<scri pt>.[c] sh.

Thefunction wri t eConpi | eScri pt takesan optiona parameter which
can be one of the following:

OLD if fileName exists, movetheoldoneto fil eNane. ol d
before creating the new one.

DATE if fileNanme exists, movetheoldoneto
fil eNane. {dat est anp} before creating the new one.

Syntax

wri t eConpi | eScri pt ("<fileName>", "<ACTION>" [, OLD| DATE])

Example

writeConpileScript("/myl/conmpilelscript", "SETUP', OLD)

Functions used in Actions 35-23

This executes the SETUP action and writes the output of the functions to the
specified script, first saving the pre-existing script to

/ my/ conpi | e/ scri pt. ol d. Thisfunction knows to ignore the function
sour ceConpi | eReq or sourceConpi | eOpt if it encounters either at
the top of thelist of SETUP functions. See sections 35.3.26
sourceCompileOpt and 35.3.27 sourceCompileReq.

35.4 Functionsunder Consideration for
Future Ilmplementation

copyCat Man Will copy catman files from source directory
specified in table file by
CATMAN_SOURCE_DIR to target directory
specified in the UPS database configuration file
by CATMAN_TARGET_DIR. Reversible (will
run uncopyCat Man)

copyHt m Will copy html files from source directory
specified intablefileby HTML_SOURCE_DIR
to target directory specified in the UPS database
configuration file by HTML_TARGET _DIR.

copyl nfo Will copy Info filesfrom source directory
specified in table file by INFO_SOURCE_DIR
to target directory specified in the UPS database
configuration file by INFO_TARGET_DIR.

copyMan Will copy man files from source directory
specified in table file by MAN_SOURCE_DIR
to target directory specified in the UPS database
configuration file by MAN_TARGET_DIR.
Reversible (will run uncopyMan)

copyNews Will copy news files from source directory
specified intablefileby NEWS _SOURCE _DIR
to target directory specified in the UPS database
configuration file by NEWS_TARGET_DIR.

el se () Will begin an alternative branch
el sei f (<conditi on>) Will proceed to another condition
endi f () Will end a conditional branch

i f (<condition>) Will begin a conditional branch

35-24 Functionsused in Actions

uncopyCat Man Will remove catman files from target directory
specified in the UPS database configuration file
by CATMAN_TARGET_DIR. Reversible (will
run copyCat Man)

uncopyMan Will remove man files from target directory
specified in the UPS database configuration file
by MAN_TARGET_DIR. Reversible (will run
copyMan)

Functions used in Actions 35-25

35.5 Examplesof Functionswithin Actions

35.5.1 A setup Action

Thisfirst example showsa set up action:
ACTI ON=SETUP
prodDir ()
set upEnv()
pat hAppend(PATH, ${UPS PROD DI R}/ bi n)
set upRequi red("crow")
set upOptional ("gypsy")
When the product instance gets setup, UPS does five things in addition to
set up’sinternal processes.
» setsthe variable $<PRODUCT>_DIR to the product root directory

* setsthe variable $SETUP_<PRODUCT> to identify the product instance
for unsetup

* appends the product’s bi n directory to the path

* sets up the product crow (and aborts the setup if a suitable current
instance of crow isnot available)

* sets up the product gypsy, if found (set up proceeds whether or not a
suitable current instance of gypsy isavailable).

35.5.2 A “declareascurrent” Action

A second exampleillustrates steps for UPS to complete when the product
instance is declared as current to the database:

ACTI ON=CURRENT

execut e("echo Cal | final i nstall script for
${ UPS_PROD NAME} ${UPS_PROD VERSI ON} ")
sour ceRequi red(${ UPS_UPS DI R}/ current, UPS_ENV)

UPS echoes the given text and sourcesthe curr ent script for the product.

35-26 Functionsused in Actions

35.6 Local Read-Only Variables Availableto

Functions

The read-only variables listed below are set by UPS and available for use with
the functions described in section 35.3 Function Descriptions. In several
functions, the flag UPS_ENV_FLAG controls whether these variables get set
(see section 35.3.28 sourceOptCheck).

These UPS variables do not get exported to the environment, but exist only for
the duration of, and in the context of, the processing of an action (actions are
described in Chapter 34: Actions and ACTION Keyword Values). By contrast,
the environment variables $<PRODUCT>_DIR and $SETUP_<PRODUCT>
(described in section 23.1 setup under Environment Variables Set by Default
During setup), if defined, remain set and available for use aslong as the

product is setup.t

35.6.1 List of Current Read-Only Variables

When you use these variables, always enclose them in curly brackets ({}) as

shown inthelist.

Local Read-Only Variable

Description of Value

${PRODUCTS}

Generally has the same value as the environment variable
$PRODUCTS. Thedifferenceisthat (read-only) ${ PROD-
UCTS} keepsthe value set at the time UPS was invoked,
whereas (environment) SPRODUCTS may be reset.

You can reset $PRODUCTS (i.e., using the function
envSet (PRODUCTS, "<val ue>" inthe
tablefile) in order to use anew valuein the temp file;
$PRODUCTS won't get overwritten by ${ PRODUCTS} as
the temp file executes. See the example that follows this
table.

Notethat thisisnot valid for the other read-only variablesin
thistable; if you try to reset them (as environment vari-
ables), your values will get overwritten by the read-only
values as the temp file executes.

${REQ_PROD_QUALIFIERS}

Requested product qualifiers (including optional ones), as
opposed to the declared product qualifiers.

For example, if yourun setup fred -q

opt 1: opt 2 and fred is declared with QUALIFI-
ERS="opt1", then { UPS PROD_QUALIFIERS} is
"opt1", while ${ REQ_PROD_QUALIFIERS} is
"optl:opt2".

1. The set up command and these variables are described in section 23.1 setup.

Functions used in Actions 35-27

Local Read-Only Variable

Description of Value

${UPS_COMPILE}

Location and file name of afile containing compiled func-
tions (see Chapter 38: Use of Compile Scriptsin Table
Files). It hasthe value of the combined keywords:
COMPILE_FILE_DIR/COMPILE_FILE

${UPS DIR}

Entire pathtothe UPS directory of aproduct. (Thisisnot
the same as the environment variable SUPS_DIR that points
to the root directory of the UPS product!)

${UPS_EXTENDED}

Thissetto1if the - € (extended) option was specifiedin
the set Up command (see section 25.2.1 -€)

${UPS_OPTIONS}

Option string that was passed with the - O (upper case 0)
flag (see Chapter 25: Generic Command Option Descrip-
tions)

${UPS ORIGIN}

This specifies the location of the master source files.

${UPS_OS FLAVOR}

Operating system flavor as obtained from ups fl a-
vor

${UPS_OVERRIDE}

This contains the UPS command lineoption - H <f | a-
VOr > that would override the default; not set by default.
Canbeused to "lie" to UPS about the flavor of the machine.
May be expanded in the future to contain other UPS com-
mand line options.

${UPS_PROD_DIR}

Product instance root directory; same value as the environ-
ment variable $<PRODUCT>_DIR

${UPS_PROD_FLAVOR}

Product flavor chosen during instance matching

${UPS_PROD_NAME}

Product name as declared in the UPS database

${UPS_PROD_QUALIFIERS}

Product qualifiers chosen during instance matching.

These are the qualifiers declared with the selected instance.
They are not necessarily the same set of qualifiers specified
on the command lineviathe - option (the UPS match-
ing algorithm chooses the “best fit” based on the specified
qualifiers; not necessarily an exact match).

${UPS_PROD_VERSION}

Product version as declared in the UPS database

${UPS_SHELL}

Value can be csh or sh.

${UPS_SOURCE}

Value can be “source” for cshor “.” for sh

${UPS_THIS DB}

Database in which this product instance is declared.

${UPS_UPS DIR}

Peth to the product instance’'s UPS directory

${UPS VERBOSE}

Thisissetto 1if the -V (verbose) option was specified
(see Chapter 25: Generic Command Option Descriptions).

35-28

Functionsused in Actions

$PRODUCTSvs. {PRODUCTS}: Resetting $PRODUCTS

This example isintended to illustrate the interaction between the read-only
variable ${ PRODUCTS} and the environment variable $PRODUCTS. There
are a couple of potentialy confusing points.

Let 3{ PRODUCTS} besetto / f nal / ups/ db. Say inyour table file you
set $PRODUCTSto / pat h/ t o/ mydb inthe SETUP action, likethis:

ACTI ON=SETUP
envSet (PRODUCTS, "/ path/to/ nydb: ${ PRODUCTS} ")

Now ${ PRODUCTS} and $PRODUCTS are different. The following
execut e functions show the differencein thevalues. The function:

execut e("echo $PRODUCTS", NO_UPS_ENV)
would produce:

/ pat h/ t o/ nydb: / f nal / ups/ db

whereas the same function using ${ PRODUCTS}, e.g.,
execut e("echo ${PRODUCTS}", NO UPS ENV)
would produce only:

/fnal /ups/db

$PRODUCTS vs. ${PRODUCTS}: Effectson setup and ups
depend

Another issueisthe set up. .. functions. Say you have aproduct fred
vl Odeclaredin / pat h/ t o/ nydb (the database not included in
${PRODUCTS}). If youincludea set upRequired or

set upOpti onal function later inthe SETUP action, e.g.,:

ACTI ON=SETUP

envSet (PRODUCTS, "/ path/to/ nydb: ${ PRODUCTS}")
set upRequired(fred vl _0)

the setup will fail because these functions only reference the read-only variable

${PRODUCTS}, whichin this case doesn’t include your product. You can get
around thisby using the execut e function to set the product up:

execute ("setup fred vl 0", NO_UPS ENV)
This function uses the environment variable $PRODUCTS.
Remember though, whenyou runa ups depend on aproduct, only
productsidentified in set upRequi red or set upOpti onal functions

get listed. You would not seefred vl Olistedinthe ups depend output
for the main product in our example.

Functions used in Actions 35-29

35.6.2 Read-Only Variablesunder Consideration for the
Future

We plan to make the keyword values, listed in section 28.4 List of Supported
Keywords, available as read-only variables available to functions. The
read-only variable corresponding to a keyword will typically include “UPS "
prepended to it. E.g., the read-only variable corresponding to the keyword
DECLARED will be ${UPS DECLARED}. Severa of these are already

implemented in thisway, e.g., 5{ UPS PROD_DIR} correspondsto the
keyword PROD_DIR.

35-30

Functionsused in Actions

